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The problem of the propagation of vibration waves in an elastic coal-bearing rock is considered based 

on a model of a three-component heterogeneous medium. The effect of the parameters of the vibration 

on the weakening of the rock mass and on the free and absorbed gas distribution in the vicinity of a 

vibration well is estimated. 

Up to now the changes in stress distribution in a rock mass under the action of a vibration 
wave have been considered within the framework of the linear theory of elasticity and a two- 
component medium represented by an elastic matrix and a’free gas [l, 21. In order to establish 
the optimum action of the vibrations it is crucial that the mathematical model be close to a real 
coal seam, which is a medium with pores and cracks saturated by a two-phase, i.e. free and 
absorbed, gas. In this connection a new boundary-value problem of vibration-wave propaga- 
tion in a coal seam is stated. It is based on the mathematical model of a three-component 
heterogeneous medium developed by Podil’chuk [2,3], which describes the behaviour of a gas- 
saturated rock mass. 

1. PHYSICAL BASIS OF THE MODEL 

Following the ideas of [2], when considering a primary macrovolume of rock mass we will 
distinguish three basic components: a deformable matrix with cracks and pores, as well as free 
and absorbed methane. In a perturbed rock mass the free gas moves from the cracks and 
macropores into the excavations or wells, basically obeying the laminar filtration described by 
Darcy’s law 

m2bf2 =-kp;'aP2 lax,, i-l, 2, 3 (1.1) 

Here m, is the matrix porosity, equal to the relative volume of macropores and cracks, vJ2 are 
the components of the mean velocity vector of the free gas relative to the. solid component, k is 
the gas permeability coefficient p1 is the viscosity of the gas, P2 is the gas pressure in the 
macropores and cracks, and ici are the macrocoordinates of averaged motion. The state of the 
free gas is described by the equation 

P2 = p2ZRT (1.2) 
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Here pz is the mean density of the gas in the macropores, 2 is the gas compressibility 
coefficient, R is the universal gas constant, and T is the absolute temperature. 

At the same time as the free gas filters through the coal, the absorbed gas undergoes 
diffusion inside the system of macropores. The diffusion flow is described by Fick’s law 

P3m3Y13 =-l!IG(C3+U)/&i, i=l, 2, 3 (1.3) 

(4 is the volume ratio of macropores in the medium, p3 is the mean density of the gas in the 
macropores, q” are the components of the mean velocity vector of gas motion within the 
system of macropores relative to the solid component, D is the diffusion coefficient, and c, and 
a are the concentration of the free gas and the quantity of absorbed gas in the micropores per 
unit volume of the medium). 

The filtration and diffusion fluxes are related by the gas transfer from the micropores into 
the macropores and cracks due to the difference in pressure and concentration of the gas. The 
dependence of the gas transfer on the gas concentrations c, and c, in the micro- and 
macropores is given by 

4=P(c* -c3) (1.4) 

where B is the gas transfer coefficient. 
In an unperturbed rock mass the amount of free gas is much smaller than the amount of 

absorbed gas [4]. It follows that the amount a of absorbed gas is much greater than the free gas 
concentration c, in the micropores. This enables us to simplify the model by neglecting the 
free gas concentration in micropores and henceforth setting c, = 0. Taking this into account, 
we can write the gas density inside the micropores in the form 

(1.5) 

It is obvious that c, =pz. Then the gas transfer from the system of micropores into the 
macropores and cracks can be determined from the pressure of the free gas Pz using (1.2) and 
(1.4) as follows: 

q=Pp2 I(ZW 0.6) 

As the gas is filtered, the gas separation conditions undergo changes governed by the gas 
permeability coefficient k and diffusion coefficient. The latter are functions of the coordinates 
and time, the variation of porosity being described by [5] 

mi = mfeXp(q, C), i= 2, 3 (1.7) 

Here P$ and 4 are the initial volume ratios of the macro- and micropores, respectively Q, 
and (x, are the compression coefficients, and o is the hydrostatic pressure. 

It has been established experimentally [6] that coal swelling depends strongly on the amount 
of gas, and has the form 

e= KA o-f9 

where e is the volume expansion of the gas-saturated cracked porous medi~um, A is the 
variation of the amount of gas per unit volume of the medium, and K is the swelling or 
volume expansion coefficient of the medium. We determine the change in the amount of gas as 
follows: 

0.9) 
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where a, and Pm are the amount of absorbed gas per unit volume of the medium and the free 
gas pressure inside the pores in an unperturbed rock mass or in any other initial state. 

2. THE BASIC EQUATIONS QF THE MODEL 

Following the main assumptions of the mechanics of heterogeneous media [7], to derive the 
equations of the stress-strain state of a non-linear gas-saturated cracked porous medium we 
will use the equation of continuity and the equation of motion for the kth ~om~nent 

a(pkmk) a 
at 

+z(pkmkv’)=qk 

i 

dWk a 
Pkmk dt 

L-r(mka~)+~k -~fqk=O, i=l, 2, 3 
i 

(2-l) 

(2.2) 

where xi are the macrocoordinates used to set up the averaged equations, qk is the mean mass 
transfer from the kth component into the other ones, rn, is the volume ratio, pk is the density, 
v;:” are the components of the mean velocity vector of the motion, and E” are the components 
of the resulting force due to the moments exchange between the kth phase and the other 
ones (inside the primary macrovolume). In (2.1) and (2.2) i and j (i, j = 1, 2,3) are the fixed 
and free indices, respectively, while si is defined in the same way as the mean phase stress on 
the surface. 

Substituting the velocity determined from Darcy’s law (l.l), the density from the equation of 
state (LZ), and the mean gas transfer (1.6) into the equation of continuity (2.1), we obtain the 
equation of motion 

for the gas inside the macropores and cracks. 
By analogy, for the third component, substituting the expression for the velocity from Fick’s 

law (1.3) into (2.1) and taking (1.6) into account, we obtain the equation of motion 

G-4) 

for the gas inside the micropores. 
To compute the stress state of the gas-saturated cracked porous medium in the vicinity of 

mining cavities and holes it is necessary to write the equations of the theory of elasticity that 
describe the process of medium defor~tion taking the influence of the gas into account. To 
this end we add the equations of motion (2.2) for all three components to get 

3 dkxk ari. 

kzpkrnk dt 
--$-q(F+k$3)=0 

i 
(2.5) 

Here it is taken into account that 

F;‘-4t;;:2+43 =O, i = 1, 2, 3 

and 

(2.6) 
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(2.7) 

is the total stress tensor for a multicomponent medium, which can also be represented in the 
form 

(2.8) 

N = 2G(l+ v)K / [3(1- 2v)] 

where u is the mean displacement vector of the matrix, v is Poisson’s ratio, G is the shear 
modulus of the medium, 6, is the Kronecker delta, and N is the stress factor in the medium 
due the presence of the gas. The gravitational force acting on the solid phase is neglected. 

Substituting (Ll), (1.3) and (1.6) into (2.5), and taking (2.8) into account, we obtain the 
equations 

k aP D&s ----- 
axi a axi , i= 1,2, 3 (2.9) 

As was mentioned above, the gas permeability and diffusion coefficients depend on the 
stress state of the medium, while the elasticity characteristics depend on the gas saturation. 
This means that when studying dynamical processes one has to consider the above-mentioned 
physical quantities to be interrelated functions of the coordinates and time. Assuming all the 
other coefficients to be constant, one can write the filtration equations (2.3), the diffusion 
equations (2.4), and the equations of motion (2.9) of the medium as follows: 

a(ws) UZRT 

at 
k *pQmdk 

2111 & axj axj 
+a 

ax, i 
p,?n#)q3(~ - 

k&&-a) =O 1 
$-DA= 

i=l, 2, 3 

(2.10) 

(2.11) 

(2.12) 

Here A is the Laplace operator and h and p are the Lame coefficients. 
Hence we obtain the system (2.10)-(2.12) of five differential equations consisting of the 

filtration equation for the free gas in the system of macropores and cracks, the diffusion 
equation for the absorbed gas inside the micropores, and the three equations of the theory of 
elasticity in terms of displacements. This system is the basis of the proposed mathematical 
model, with the aid of which we will study the dynamical state of a saturated cracked porous 
medium subject to vibration-wave interactions. 
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3. FORMULATION OF THE BOUNDARY-VALUE PROBLEM 

To answer the question of how to choose the mathematical model it is necessary to state the 
boundary-value problem. In a rigorous mathematical formulation of the boundary-value 
problem it is obviously impossible to take into account all the details of the technological 
process involved in mining. We will make a number of simplifying assumptions to study the 
stress-strain state of a fiied seam in the vicinity of a hole drilled from within an excavation, at 
the surface of which there are no forces, while a vibrator is applied to the hole. 

The general stress state can be represented as the sum of the stress state of the rock mass 
without an excavation and an additional stress state due to the presence of the excavation and 
the hole. Several authors have studied the stresses in unperturbed seams, i.e. the basic stress 
state. Theoretical work has shown that an unperturbed seam remains in a homogeneous stress 
state provided the seam is horizontal. In the case of an inclined seam the components of the 
stress tensor that occur in it are linear functions of the Cartesian coordinates defined by the 
following functional relationships 

O; =a@, y, a,,&, v,, G,, v2, G2, x. ~9, Lj = 1, 2, 3 (3.1) 

Here H is the distance between the stipulated centre of the seam and the free surface, y is the 
mean density of the surrounding rock, l3 is the lateral outward pressure coefficient 01, is the 
angle of inclination of the seam, and vi, G,, v,, G, are Poisson’s ratios and shear moduli of 
the rock and the coal seam, respectively. 

We assume that prior to excavations the gas-saturated cracked porous rock seam remains in 
a static equilibrium state. Its macropores and cracks are filled with free gas under pressure 
Pz = PO, while the micropores contain absorbed gas with density a = a, per unit volume of the 
medium. These quantities are related by Langmuir’s equation, which can be written in the 
form 

a=dhP, /(ZRT+%P,) (3.2) 

It is taken into account that in an unperturbed rock mass remaining in the state of equilib- 
rium the free gas pressure Pj in the micropores is equal to the gas pressure Pz in the macro- 
pores and cracks. 

When analysing the stresses in the vicinity of an excavation one can assume the basic state to 
be homogeneous and defined by (3.1) in the domain under consideration, since the additional 
stress state has a local character in a domain comparable with the thickness of the seam, which 
is many times smaller than the limits within which the seam is extended at the depth H at which 
it is located. When the additional stress state is studied in the new local system of coordinates 
xyz the boundary conditions at the free excavation surface x = 0 can therefore be written in the 
form 

(3.3) 

where PC and a, are the pressure and sorption at the surface of the hole, respectively. Here and 
henceforth m = m, and P = P2. 

The study of the effect of an excavation upon the state of a saturated seam [8] revealed that 
the variation of stress in the rock mass, the free gas pressure distribution in the macropores 
and cracks, and the redistribution of the sorption in the micropores can be observed in a 
domain comparable with the thickness of the seam. At distances several times longer than the 
seam thickness the effect of an excavation can practically be neglected. This means that when 
studying the additional stresses in the neighbourhood of a hole in the seam drilled from within 
the excavation, one can write the boundary conditions far enough from the excavation surface 
in the form 
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<Tr-.-+ -+os2q+o;, sin’cp, Z-=0, 2,=0 (3.4j 

P=P,,a =a, 

When studying the effect of a vibrator applied to the hole upon the coal seam we wilt assume 
that ideal contact is maintained between the vibrator and the surface of the hole. Suppose that 
radial displacements are generated at the surface of the vibrator, which can be described by the 
sinusoidal law 

u = u* sinat (3.5) 

where u” is the amplitude of the generated displacement and o is the vibration frequency. 
Then the boundary conditions of the problem of studying the additional stress-strain state of a 
gas-saturated coal layer in the vicinity of a hole vibrator will have the form (39, while the 
character of pressure and sorption variation at the surface must be defmed as follows: 

P=P,(t), a=a,(t) (3.6) 

Here P,(f) and I+ are the pressure and sorption boundary values, which in the general case 
depend on the time t > 0 and other technical characteristic of the vibrator. 

The main goal of the present study is to state the bo~da~-value problem of ma~ematica~ 
physics concerned with the interaction of two related gas flows and the dynamical process of 
stress predistribution in a gas-saturated rock mass caused by the vibrator. Because of this it 
suffices to state the following ideal initial conditions. 

Let the stress in the vicinity of the hole be described by (3.4) at the initial instant of time. We 
assume that the free gas pressure dis~ibution and sorption inside the rock mass is homo- 
geneous at the initial instant r = 0 

P=P,, a=ao (3.7) 

On the basis of (3.4) and (3.6) one can observe that in the general case the stress state in the 
vicinity of a hole cannot be considered to be ~isy~etric. This would, however, lead to a very 
complex mathematical problem. In the first formulation we shall therefore make one more 
assumption, namely 

which enables us to consider the free gas pressure, sorption, and stress fields to be axisym- 
metric in the vicinity of the hole. 

The above assumptions therefore enables us to write the following equations in a cylindrical 
system of coordinates Rex: the filtration equation for the free gas within the system of macro- 
pores and cracks 

the diffusion equation for the absorbed gas within the system of macropores 

(3.9) 

(3.10) 
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and the equations of motion of the gas-saturated cracked porous medium 

(3.11) 

The boundary conditions for the problem of studying the additional state due the action of the 
vibrator can be written in the form 

P(r,, t)=c(t), a(ro, t)=a,(t), O<t<= (3.12) 

on the surface of the hole. 
According to (3.7), the initial conditions can be written as 

u(r, 0)= 0, P(r, 0) = PO, a(r, O)=ao, ri < r (3.13) 

The boundary-value problem (3.9)-(3.13) consists of three non-linear second-order partial 
differential equations describing the dynamical state of a gas-saturated cracked porous med- 
ium. Numerical methods must be invoked to solve the system. 

4. THE MODEL PROBLEM 

Two problems, the connected and the disconnected one (neglecting the effect of matrix 
displacement on the gas flows), have been solved for low-frequency vibrations with constants 
o = 125.6 s-l, E = 540 MPa, and v = 0.35. The remaining physical parameters have been chosen 
as follows: m, = 0.02, p1 = 1.2 x lo4 Pa s, k = lo-l4 m’, 2=0.18, D=lO” m*/s, p=3.5x10d 
S -l, K = 0.24 x lo-’ m3 I kg, 4 = 24 kg/m3, k, = 0.35 m3/kg, R = 529 J/(kg K), and T = 298 K. 

Well-known approaches [8,9] have been employed to construct the solutions. 
Figure 1 shows graphs of the free gas pressure distribution (curves 1) in the vicinity of a hole 

of radius R = 0.05 m at time t = 1 s (the solid and dashed lines correspond to the disconnected 
and connected problems, respectively). It is assumed that the surface of the hole is under a 
periodic load due to the gas pressure P, = 9.81 x 104(1 + 0.2sinot) Pa. 

Even though during this short time interval the pressure and sorption distributions in 
both problems are practically the same, the displacement distributions differ considerably 
(curves 2). 

Fig. 1. 
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Therefore the solutions of the si~~~~ model problems indicate that the computations 
based on the more-sophisticated mathematical model, which reflects the mechanism of the 
action of the VI&ration waves on the gas-saturated coal mass in the most complete way, enable 
us to determine the parameters of vibration treatment more accurately and also could reveal 
new vibration effects in the coal seam. 
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